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ABSTRACT The One Health Joint Plan of Action (2022–2026), developed by the 
United Nations Quadripartite (FAO, UNEP, WHO, and WOAH), provides a comprehen­
sive framework to address global health risks at the human-animal-plant-environment 
interface. However, it overlooks the critical role of microbiomes—complex microbial 
communities that underpin the health of all ecosystems and are central to the 
One Health paradigm. Microbiomes regulate key processes, such as nutrient cycling, 
pathogen suppression, antimicrobial resistance (AMR) dynamics, and environmental 
resilience, making their inclusion essential for achieving One Health goals. We argue 
that incorporating the central role of microbiomes will help us move from managing 
the symptoms of these challenges toward addressing their root causes and providing 
sustainable, long-term solutions. This perspective outlines how microbiome science can 
enhance the core action tracks of the One Health Plan, offering innovative solutions for 
zoonotic disease prevention, AMR mitigation, food safety, and environmental sustaina­
bility. Integrating microbiomes into the One Health agenda is imperative for fostering 
proactive, cross-sectoral, and sustainable approaches to global health challenges.
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O ne Health is a well-established concept that is now more crucial than ever in 
tackling modern challenges of zoonotic diseases, antimicrobial resistance, and 

climate- and environment-related health threats (1). One Health has been described 
by an international group of experts as “an integrated, unifying approach that aims to 
sustainably balance and optimize the health of humans, animals, plants, and ecosystems. 
It recognizes the health of humans, domestic and wild animals, plants, and the wider 
environment (including ecosystems) are closely linked and interdependent” (OHHLEP) 
(2).

In 2022, four major international organizations—the Food and Agriculture Organiza­
tion of the United Nations (FAO), the United Nations Environment Programme (UNP), 
the World Health Organization (WHO), and the World Organisation for Animal Health 
(WOAH)—published an overarching plan for combating and preventing major health 
problems wherever humans, animals, plants, and the environment interface: the One 
Health Joint Plan of Action (2022–2026) (OHJPA) (3). Working together for the health 
of humans, animals, plants, and the environment is a comprehensive blueprint for how 
policies, research programs, and targeted investment can better protect the Earth and 
its living populations. However, this document does not mention “microbiome,” even 
though microbiomes play a critical role in achieving each of these goals. This omission 
reflects the relatively recent emergence of microbiome science and its undervaluation in 
global health strategies, despite its critical importance. Microbiomes regulate essential 
processes, such as nutrient cycling, pathogen suppression, antimicrobial resistance 
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dynamics, human health, and environmental resilience, making their inclusion indispen­
sable for achieving the One Health goals.

Here, we argue that incorporating microbiomes into the six action tracks outlined in 
the OHJPA will strengthen the framework’s ability to address global health challenges. 
Microbiomes are communities of microorganisms (bacteria, archaea, fungi, and other 
microeukaryotes) and viruses that inhabit various hosts and environments and support 
their functions, thanks to their diversity and metabolic versatility (4, 5) (Fig. 1). This essay 
outlines how microbiome science can enhance the plan’s objectives and propose a set 
of actionable recommendations to ensure microbiomes are fully integrated into the One 
Health agenda.

MICROBIOMES ARE CRUCIAL INTEGRATORS ACROSS ONE HEALTH SYSTEMS

To define a microbiome, the conceptual diagram in Fig. 1 draws a parallel with a theater 
play (5). Microbiomes are so ubiquitous that their activities penetrate and integrate 
the subjects of all the primary goals of the OHJPA (3). Figure 2 provides a contrasting 
comparison showing the narrow focus of microbial integration in the OHJPA through the 
lens of risk and how augmentation with a microbiome perspective would enhance the 
current plan. The current plan misses three areas where microbiomes, as communities 
of cohabiting microorganisms, can play an inherent part of the One Health solutions: 
(i) microbiomes, which include beneficial and harmless microorganisms, as well as 
pathogenic ones, can keep pathogens in check when the microbiome is in balance 
(eubiosis) and can lead to disease when out of balance (dysbiosis); (ii) microbiomes 
perform essential functions to support human, animal, and plant life and broader 
ecosystem functioning; and (ii) recognizing the interdependent nature of microbiomes 
across hosts and ecosystems is central to the management of human and environmental 
health and resilience.

Microbiomes and microbial products connect host-environment compartments in 
tangible ways, thanks to their ability to move across reservoirs (6, 7). However, micro­
biomes are typically studied within isolated reservoirs, the two main classes being 

FIG 1 Working definition of a microbiome. Using an extended metaphor, a microbiome can be described as a theater where microorganisms and viruses (actors) 

perform a play. The environmental conditions and host metabolic status define the theater. The actors are a diverse community composed of viruses, bacteria, 

archaea, fungi, protists, and algae. The play is the result of their metabolisms and metabolic cross-talks, including synthesis and turnover of biomolecules, toxins 

and signaling molecules, and processing of wastes, including in the form of potent greenhouse gases (GHG).
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host-associated microbiomes and the larger environmental microbiomes in the context 
of the ecosystems where they live. A host-associated microbiome is a collection of 
microbes that reside in and on hosts, such as humans, plants, or animals. They typically 
form symbiotic relationships with the hosts, helping with digestion, immune regulation, 
and nutrient absorption. They can also play protective roles in the case of infection 
by pathogens. For example, the effect of Clostridioides difficile on human gut health or 
severity of COVID-19 infection depends on the gut microbiome’s overall health (8, 9). In 
another example, the effectiveness of vaccines on animals varies with the condition of 
the host’s immune system and the microbiomes that support it (10, 11). More broadly, 
a deep understanding of disease transmission, containment, and prevention requires 
knowledge of how microbiomes travel across species through host-to-host transmission 
and how the success of this transport depends on the “health” of other host micro­
biomes.

The second class of microbiomes, environmental microbiomes, inhabit all ecosystems 
on the planet, including soil, water, and air. Environmental microbiomes play critical 
roles in regulating ecological processes, such as nutrient cycling, decomposition, carbon 
sequestration, pollutant degradation, and production and consumption of greenhouse 
gases. Thus, robust microbiomes maintain the health and balance of ecosystems, 
supporting biodiversity, soil fertility, water quality, and plant and animal growth.

Microbiomes provide a wide range of services to all managed and natural ecosystems, 
as summarized in Fig. 3. Multiple microbiome services functionally link many ecosystems, 
from the human gut to forest soils to river health (6, 7). For example, microbiome 
nitrogen cycling function (or dysfunction) in soils can affect microbiomes and other 
biological entities in downstream waterways, affecting the chain of life from river to 
ocean to human (12, 13).

USING MICROBIOME KNOWLEDGE TO STRENGTHEN ONE HEALTH PLANS

Incorporating microbiomes in the One Health concept presents numerous opportuni­
ties for sharing experiences and creating synergies between stakeholders working in 
different sectors. This approach is grounded in the idea that similar microbiome-based 
mechanisms and paradigms may underpin health in different host or environmental 
settings. In particular, the health of host and environment microbiomes is determined 
by similar parameters (such as microbiome structural or functional diversity and 
redundancy, which are associated with increased resilience) that can be monitored 

FIG 2 Integration of microbiomes in the One Health Joint Plan of Action. The narrative of the current One Health Plan of Action (left) views microbes through a 

pathogen lens, whereas broadening this perspective by considering microbiomes (right) is essential for One Health management.
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using similar molecular tools (15). Microbiomes serve as tangible connectors between 
environmental, animal, and human systems, forming a microbiome continuum (Fig. 4) 
that can be strategically leveraged to craft One Health solutions (6). For instance, the soil 
microbiome plays a pivotal role in nutrient cycling and plant health, directly influenc­
ing the nutritional quality of plant-based foods (16). When animals consume plants, 
some plant-associated microbes (endophytes) interact with their gut microbiomes (17). 
Similarly, the food humans eat contains microbes that interact with their gut micro­
biomes (18). Human interventions, such as applying animal manure to soil or tilling 
fields, further influence soil microbial activity, creating downstream effects throughout 
the entire food chain (14, 19).

Understanding these interconnected microbiome processes is essential for predicting 
the dispersion, filtering, and epidemiology of pathogens and other detrimental microbes 
within these communities. By analyzing how microbiomes move through and connect 
environmental, animal, and human compartments, we can design more effective One 
Health strategies that address root causes rather than symptoms.

FIG 3 Microbiome services. Microbiomes provide services to their host (orange) and to the environment they inhabit (green). GHG, greenhouse gases. This list is 

non-exhaustive; see also reference 14.

Perspective mBio

Month XXXX  Volume 0  Issue 0 10.1128/mbio.01456-25 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 1

2 
Se

pt
em

be
r 

20
25

 b
y 

10
9.

17
1.

21
5.

11
.

https://doi.org/10.1128/mbio.01456-25


The OHJPA breaks down its objectives into six action tracks (3). Figure 5 shows how 
microbiomes can contribute to these objectives.

Action track 1: enhancing One Health capacities to strengthen health 
systems

To build effective One Health systems, integrating microbiomes as a core concept is 
critical. The framework should move from a species-focused perspective to a “biomes” 
perspective, recognizing the interconnected roles of microbiomes in human, animal, 
plant, and environmental health. This reframing can inform institutional policies, training 
programs, and governance structures. For example, curriculum development can include 
the role of microbiomes in nutrition, disease dynamics, and environmental sustainability. 
As microbiome science matures into its own field and training programs (20), curricula 
can be tailored to these relevant fields. For instance, a promising initiative is the inclusion 
of microbiome science in public health training programs, where professionals learn to 
monitor environmental microbiomes for early signs of disease outbreaks or ecosystem 
degradation.

FIG 4 The environment-host microbiome continuum. Illustration of the microbiome continuum in the soil to human One Health thread, mediated by food 

production and consumption. Microbes experience the world as a continuum; they can move and encounter other microbiomes through natural processes and 

anthropogenic management.

FIG 5 Microbiome contributions to the six tracks of the One Health plans. Microbes tangibly connect (overlapping Venn diagram sections) the three focus areas 

of One Health (center panel). This figure summarizes the six tracks of the ONJPA and how microbiome science can enhance them.
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International collaboration is also vital. For instance, efforts to integrate microbiome 
data into global databases, such as the WHO’s Global Health Observatory or the Global 
Biodiversity Information Facility (GBIF), could enhance data-sharing and surveillance 
capacities. Investments in microbiome research, particularly in low- and middle-income 
countries (LMICs), can strengthen local health systems, allowing them to predict and 
respond to emerging challenges more effectively. By embedding microbiome knowl­
edge into institutional frameworks, Track 1 can lay the foundation for the remaining 
action tracks, ensuring health systems are equipped to address the complexities of One 
Health.

Action track 2: reducing the risks from emerging and re-emerging zoonotic 
epidemics and pandemics

Emerging zoonotic diseases often arise at the human-animal-environment interface, 
where microbiomes serve as critical mediators. Microbiome-based surveillance systems 
can identify microbial shifts that signal potential spillover events (21). For example, 
research has shown that environmental stressors such as deforestation can alter soil 
and water microbiomes, increasing the survival of zoonotic pathogens like Leptospira in 
contaminated water sources (22, 23). Monitoring these shifts can provide early warning 
signals for public health interventions.

Predictive modeling based on microbiome dynamics can also reveal critical pathways 
for disease emergence. For instance, during the COVID-19 pandemic, studies suggested 
that changes in the gut microbiome influenced immune responses to the virus. In-depth 
studies are still needed to better understand the actual impact of gut dysbiosis vs. 
eubiosis as well as the mechanisms involved; moreover, most of the available studies on 
this topic are based on correlation and fail to demonstrate causal association (24–26). 
However, despite these limitations, system-wide monitoring of microbiomes across hosts 
and environments could have provided valuable insights into disease progression and 
transmission risks. By incorporating microbiome science into zoonotic disease preven­
tion strategies, Track 2 can enhance early detection and containment efforts, ultimately 
reducing the frequency and severity of pandemics.

Action track 3: controlling and eliminating endemic zoonotic, neglected 
tropical, and vector-borne diseases

Microbiome science offers innovative solutions for controlling endemic and vector-borne 
diseases, through inhibition of pathogen development in the vector or blockade of 
transmission to humans. For instance, the introduction of Wolbachia secies bacteria into 
mosquito populations has proven effective in reducing the transmission of arboviral 
diseases such as dengue and Zika. Wolbachia spp. reduce mosquito lifespans and 
interfere with virus replication, providing a sustainable, microbiome-based alternative 
to chemical insecticides. This approach has been successfully deployed in regions such 
as northern Australia, where dengue cases have dramatically declined (27). Many other 
microbiome-based strategies have been proposed to tackle vector-borne diseases, such 
as paratransgenesis, probiotic baiting, or microbiome engineering for transmission 
blocking (28, 29), whose effectiveness and impact remain to be formally assessed 
through appropriate entomological, ecological, and epidemiological indicators.

Additionally, microbiome-based surveillance systems can detect early shifts in 
microbial populations that signal increased disease risks. For example, monitoring 
livestock microbiomes could help farmers identify dysbiosis linked to diseases, such 
as brucellosis or avian influenza (30–33). Community-centric education programs 
can further promote microbiome-friendly practices, such as reducing pesticide use 
and adopting sustainable farming techniques. By integrating microbiome science 
into disease control strategies, Track 3 can reduce disease burdens while promoting 
ecological and public health resilience.
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Action track 4: strengthening the assessment, management, and communi­
cation of food safety risks

Microbiomes play a central role in food safety, influencing everything from soil health to 
contamination risks. For example, bioremediation techniques using beneficial microbes 
can reduce mycotoxin contamination in crops. Bacillus subtilis, a bacterium, has been 
shown to inhibit the growth of Aspergillus secies fungi, which produce aflatoxins harmful 
to human and animal health. This approach has been successfully tested to inhibit 
A. flavus in soil and peanuts and decrease aflatoxin B1 content in seeds (34). Educa­
tional programs targeting farmers and food producers can further promote microbiome-
friendly practices, such as reducing the use of chemical fertilizers and pesticides in favor 
of organic alternatives. For consumers, a “microbiome-friendly” food label—similar to 
organic certification—could increase awareness and demand for safe, sustainable food 
products. Governments can also incorporate microbiome health indicators, such as the 
absence of antimicrobial resistance (AMR) genes of medical concern, into food safety 
regulations, ensuring a holistic approach to managing contamination risks. By leverag­
ing microbiome science, Track 4 can improve food safety while supporting sustainable 
agricultural practices.

Action track 5: curbing the silent pandemic of AMR

AMR is a growing global health threat, and microbiomes are at the heart of its dynamics. 
For example, excessive antibiotic use in agriculture has led to the proliferation of AMR 
genes in soil and water microbiomes, which can transfer to human pathogens (35). 
A promising solution to decrease the use of antibiotics involves using probiotics or 
beneficial microbes to outcompete harmful bacteria, reducing the need for antibiotics in 
livestock farming (36). For example, the supplementation of broiler feed with Saccha­
romyces cerevisiae or Lactobacillus acidophilus appears as an effective antibiotic-free 
alternative to the widely used zinc-bacitracin (ZnB) in poultry farming (37).

Microbiome-based monitoring systems can also track AMR markers across clinical, 
agricultural, and environmental settings, providing critical data for mitigating resistance 
(38). For instance, metagenomic sequencing can identify hotspots of AMR gene transfer, 
enabling targeted interventions. Policies that incentivize microbiome-friendly antimicro­
bial strategies, such as phage therapy or precision antibiotics, are essential for preserving 
antimicrobial efficacy (39). By integrating microbiome science into AMR strategies, Track 
5 can curb silent pandemics and protect global health.

Action track 6: integrating the environment into One Health

Environmental microbiomes are critical for ecosystem health, biodiversity, and climate 
resilience. For example, soil microbiomes play a key role in carbon sequestration, with 
microbes converting organic matter into stable soil carbon (40). Practices like reduced 
tillage and organic fertilization can enhance soil microbial diversity, increasing carbon 
capture efficiency (41). A notable example is the use of microbial inoculants in agricul­
ture with the intent to partially replace synthetic fertilizers and pesticides in the next 
decades (42, 43).

Microbes also have potential in bioremediation, such as breaking down plastic 
waste in oceans or degrading pesticides in agricultural soils. For instance, the bac­
terium Ideonella sakaiensis can degrade polyethylene terephthalate (PET), offering a 
microbiome-based solution to plastic pollution (44). Integrating microbiome science into 
global biodiversity and climate frameworks, such as the Paris Agreement, could amplify 
these efforts. By leveraging microbiomes, Track 6 can promote sustainable environmen­
tal management and mitigate climate change impacts.
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INTEGRATING MICROBIOMES INTO ONE HEALTH: STAKEHOLDER ROLES AND 
RECOMMENDED ACTIONS

The successful integration of microbiome science and innovation into the One Health 
Joint Plan of Action (OHJPA) requires clearly defined roles across a diverse range 
of stakeholders. Policymakers and government agencies play a foundational role by 
embedding microbiome considerations into legal and regulatory frameworks. This 
includes streamlining current regulation and working towards a globally harmonized 
framework for microbiome-based interventions. For instance, the laws applying to the 
regulation of probiotics and microbiota transplants in humans and the environment 
vary greatly between countries (45). In the United States, the release of engineered 
and non-engineered microbial species is evaluated for their impact on human and 
environmental health (Microbial Pesticides Data Requirements [46]), but there is no 
consensus on how to quantify these impacts (47). There is also a governmental role in 
mandating microbiome literacy and training for public sector professionals and ensuring 
that microbiome science and innovation remain apolitical and grounded in evidence.

International organizations, particularly the Quadripartite (FAO, WHO, UNEP, WOAH), 
are uniquely positioned to coordinate global action. They are called upon to lead efforts 
in aligning microbiome-relevant policies, setting international standards, and facilitating 
capacity-building—especially in low- and middle-income countries. These organizations 
can also help integrate microbiome indicators into global One Health-related surveil­
lance and monitoring systems, ensuring alignment with existing biodiversity, climate, 
and other health goals.

Health, agriculture, and environmental professionals are critical on-the-ground actors. 
Their responsibilities include promoting practices that support beneficial microbiome 
functions, as well as implementing microbiome-based solutions for disease prevention 
and dysbiosis management. In parallel, researchers and the scientific community must 
work to standardize microbiome research methods and propose measurable One Health 
indicators to monitor efficacy and impact of microbiome-based strategies, incorporate 
microbiome data into surveillance databases, and develop new tools for early detection 
and risk assessment across human, animal, and environmental systems.

Education institutions and capacity-building organizations are essential in developing 
curricula, degrees, and training programs that foster a new generation of interdiscipli­
nary microbiome-literate professionals. Stakeholder uptake of microbiome innovations 
requires that they are socially acceptable and impactful in diverse local contexts. 
This implies culturally sensitive community engagement, inclusive co-design processes, 
citizen science programs, and microbiome-friendly labeling tailored to diverse cultural 
contexts. Public literacy campaigns can further strengthen this foundation among 
practitioners and the public. The private sector also plays a vital role in scaling innova­
tion by partnering in research and promoting sustainable products and practices that 
support microbiome health. The public sector should ensure that socio-cultural and 
behavioral considerations are embedded in policy design to ensure sustained impact.

Low- and middle-income countries (LMICs) are at the same time highly vulnerable 
to One Health threats but also rich in microbial diversity. While they should be at 
the center of One Health strategies, their infrastructure for sequencing, bioinformatics, 
and technical research capacities remains limited. Beyond strengthening existing local 
initiatives while integrating these skills and infrastructures, a phased rollout of projects 
in priority areas, such as soil health or water-borne disease surveillance, could accelerate 
the implementation of microbiome-based approaches in LMICs (48, 49).

Finally, increased and sustained funding from donors and development partners 
is crucial to support these efforts. Investment in microbiome science and innovation, 
particularly in LMICs, will accelerate research, strengthen surveillance, and unlock 
scalable solutions aligned to facilitate progress towards the One Health goals. Taken 
together, this coordinated, stakeholder­specific approach ensures that microbiome 
integration is both actionable and transformative across the One Health agenda.
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