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Highlights 
The mechanisms underlying microbe-
driven host plant defense and growth 
are poorly understood. 

Identification of plant and microbial con-
served genetic determinants that maxi-
mize the beneficial plant–microbe 
association can be harnessed for dis-
ease inhibition and enhanced crop yield. 

Understanding the genetic diversity 
(phylogenetic relatedness) and secretion 
systems of interacting species and their 
role in mediating the synergistic coexis-
Certain microbes have considerable potential as biocontrol agents against vari-
ous pathogens, but they coexist with other microbial species in complex networks 
of interactions that influence their function in a host-dependent manner. These in-
teractions and underlying mechanisms are still largely unknown. In this review we 
focus on Pseudomonas, a versatile genus of bacteria with adaptable physiologi-
cal and metabolic traits, functioning as both symbionts and pathogens. We review 
the direct antagonism pathways Pseudomonas uses to inhibit different 
pathotypes and its role in indirectly inducing systemic defense responses in 
plants. We provide insights into bacterial coexistence and interactions in host 
plant–microbe and microbe–microbe relationships, considering pairwise and 
community dynamics. Understanding these interactions will help optimize syn-
thetic communities and improve practices for sustainable agriculture. 
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tence of microbial networks might offer 
key insights into how beneficial bacteria 
can inhibit pathogens and alleviate 
stress. 

Integrated multi-omics approaches are 
crucial to understand how microbial in-
oculants influence soil microbial net-
works and plant health, as well as their 
ecological impact and potential for field 
application.
Mechanisms promoting microbial coexistence and shaping ecosystem functions 
Microbes rarely exist in isolation in their natural environments; instead, they cohabit with other mi-
crobial species in complex networks [1,2]. They can either compete or coexist with these species 
via direct or indirect mechanisms. Interdependence and coexistence among microbes contribute 
to the dynamic ecosystems they inhabit. Within microbial communities, diverse interactions — 

ranging from symbiotic relationships to competitive dynamics — create a delicate balance that 
shapes the overall microbial landscape. The symbiotic coexistence of microbes in a community 
allows for interactions and collaborative functions that surpass the individual efficiency of any 
member species in isolation [3,4]. Numerous studies have addressed diverse mechanisms that 
operate at ecological and evolutionary scales to facilitate the coexistence of microbes in ecosys-
tems. One way microbial species coexist is by utilizing different resources within an environment 
[5]. For instance, resource partitioning, driven by the use of distinct pollen-derived carbohydrate 
substrates, was found to facilitate the stable coexistence of closely related Lactobacillus species 
in the honeybee gut [6]. Additionally, microbes can form biofilms to create structured communi-
ties and establish microenvironments through spatial heterogeneity. For example, biofilm cultiva-
tion promoted the stable coexistence of the dairy starters Lactococcus lactis and Leuconostoc 
mesenteroides and reduced competitive exclusion over a hundred generations by providing 
separate ecological niches. Such spatial structures also drive the evolution of high-yield variants, 
which highlights the significance of promoting adaptive microbial communities in industrial 
applications [7]. 

In agriculture, the modern coexistence theory offers a valuable framework for deciphering the co-
existence mechanisms of competing species in resource-sharing scenarios. This theory posits 
that the interplay between niche differences and fitness differences determines whether coexis-
tence or exclusion dominates the ecological dynamics among species [5]. In this theory, both bi-
otic and abiotic factors may facilitate coexistence through stabilizing or equalizing forces among 
species. For instance, mutualistic interactions theoretically enhance coexistence by expanding
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niche differences and equalizing fitness differences among species. However, these interactions 
may paradoxically lead to competitive exclusion by reducing niche differences and increasing fit-
ness differences, contingent upon species responses to the interactions [8,9]. For example, mi-
crobes can induce mutualistic interactions through signal exchange, involving metabolic cross-
feeding, and develop new niches for the coexistence of other microbes [10,11].

Moreover, microbial coexistence extends beyond signal transduction among microbial species 
and between the microbes and their host plant. Host plant exudates play significant roles in 
selecting specific microbial communities, establishing ecological niches, and promoting coexis-
tence among diverse species [12,13]. For instance, the root-specific transcription factor 
MYB72 regulates the release of the coumarin scopoletin in the Arabidopsis thaliana rhizosphere 
and selectively influences microbial community assembly. This dual action involves inhibiting fun-
gal pathogens while increasing the colonization and coexistence of beneficial rhizobacteria, such 
as Pseudomonas simiae WCS417 and Pseudomonas capeferrum WCS35. This orchestration 
ensures that the host plant actively contributes to niche establishment for its microbial partners, 
which results in improved growth and immunity benefits for the host plant [14]. Host-plant-
associated microbes coexist in the rhizosphere and form interconnected dynamic networks 
in response to stress [14,15]. Understanding how microbial species interact, coexist, and in-
fluence one another is key to deciphering the consequential effects on community structure 
and ecosystem functions [16,17]. 

Inhibition of distinct pathotypes by Pseudomonas 
Several microbial strains are employed as biocontrol agents against a variety of pathogens. How-
ever, the host and overall microbial landscape significantly influence the effectiveness of these 
biocontrol agents, as microbial species coexist within complex networks of both positive and 
negative interactions. These complex interactions and underlying mechanisms make model mi-
crobial systems valuable for studying host-beneficial microbe–pathogen interactions. 

Herbivorous insects 
Pseudomonas species exhibit specific toxicity against insect pests through mechanisms influ-
enced by bacterial introduction, toxin type, and secretion system activity [18–21]. For example, 
Fit toxins are typically produced by Pseudomonas protegens and Pseudomonas chlororaphis. 
Fit is encoded by the fitD gene, which is flanked by genes encoding a type 1 secretion system re-
sponsible for transporting the toxin out of the cell. In P. chlororaphis PCL1606, insecticidal po-
tency is enhanced by the synergy between the Fit toxin and 2-hexyl-5-propyl resorcinol (HPR) 
[18,20]  (Figure 1). Meanwhile, P. protegens CHA0 exhibited strong insecticidal activity, with 
orfamide acting in oral infections and hydrogen cyanide hemolymph injection [21]. Moreover, 
the exolysin A (ExlA) toxin from P. chlororaphis PA23 causes cell shrinkage and cytoplasmic leak-
age and causes death in Galleria mellonella and Drosophila melanogaster [22]. However, in 
P. protegens, the type VI secretion system not only disrupts the insect gut microbiome by 
targeting members of the Enterobacteriaceae, it also transports RhsA and Ghh1 effectors to 
the hemocoel, which leads to bacterial colonization and insect pathogenicity [23].

Fungi and oomycetes 
Certain fluorescent pseudomonads inhibit phytopathogenic fungal growth primarily by producing 
the natural metabolite pyrrolnitrin (PRN) and its derivatives. This metabolite disrupts the fungal re-
spiratory electron transport chain, which suppresses ATP synthesis and the formation of essential 
cellular components such as DNA and proteins [24,25]. Moreover, P. aeruginosa LV and P. 
chlororaphis PCL1391 synthesize various phenazine derivatives – including phenazine-1-
carboxamide (PCN) and phenazine-1-carboxylic acid (PCA) – that act as antifungal metabolites
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Figure 1. Various mechanisms by which Pseudomonas species inhibit different pathotypes, including insects, 
fungi, nematodes, and bacteria. These mechanisms involve the production of antimicrobial metabolites, the use of 
secretion systems, and the disruption of pathogen cellular processes. Abbreviations: NRP, non-ribosomal protein; ROS, 
reactive oxygen species. Figure created with BioRender.
against several phytopathogenic fungi, such as Botrytis cinerea and Fusarium oxysporum 
[26,27]. Mechanistically, phenazines contribute to biofilm formation, enhance antifungal potency 
in target cells, and alter the cellular redox state, which leads to the generation of reactive oxygen 
species (ROS) and fungal death [28,29]  (Figure 1). Additionally, biosurfactants such as cyclic 
lipopeptides (CLPs) and rhamnolipids can inhibit phytopathogenic fungi [30]. For instance, 
rhamnolipid from Pseudomonas aeruginosa A4 inhibited mycelial growth of the phytopathogen 
Aspergillus niger F14 by 61% [31]. Meanwhile, CLPs, such as orfamide and syringomycin, are 
produced by non-ribosomal peptide (NRP) synthetases [32]. Interestingly, the co-production of 
orfamide A and sessilin-(T) by Pseudomonas sp. CMR12a inhibited the growth of Rhizoctonia 
solani, whereas individually they did not [33]. Similarly, syringomycin E inhibited the growth of 
the postharvest green mold of citrus fruits Penicillium digitatum [34]. The putisolvin-like CLPs pro-
duced by P. putida 267 proved excellent biocontrol against Phytophthora capsici [35]. Other CLP 
species have been shown to inhibit the mycelial growth of Pythium ultimum or Phythophtora 
infestans oomycetes [36,37]. Moreover, many Pseudomonas strains, especially Pseudomonas 
fluorescens, produce 2,4-diacetylphloroglucinol (DAPG), a phenolic compound known to sup-
press fungal pathogens such as Gaeumannomyces graminis in wheat, Thielaviopsis basicola in
Trends in Plant Science, Month 2025, Vol. xx, No. xx 3
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tobacco, Pythium ultimum in beet, and Ralstonia solanacearum in tomato [38]  (Figure 1). DAPG 
acts as a proton ionophore that disrupts the proton gradient across the mitochondrial membrane, 
thereby inhibiting fungal growth [39]. 

Phytopathogenic bacteria 
Beneficial Pseudomonas can also interfere with quorum sensing and inhibit biofilm formation to 
combat pathogenic bacteria. For instance, cyclic dipeptides (CDPs) and diketopiperazines 
(DKPs) from P. aeruginosa RKC1 effectively inhibit quorum sensing in the soft rot pathogen 
Lelliottia amnigena, impeding their cell growth [40]. Recently, Pseudomonas mosselii strain 
923, found in rice paddy fields, was demonstrated to inhibit the growth of Xanthomonas oryzae 
pv. oryzicola (Xoc). This was attributed to the synthesis of antimicrobial pseudoiodinine through 
the psdABCDEFG cluster and the regulation of the GacS/GacA two-component system [41]. 
Meanwhile, the beneficial Pseudomonas oryziphila strain 1257 can potentially inhibit the Xoc 
RS105 strain through a non-ribosomal peptide that is catalyzed by LgrD,  along  with  the
carbamoyl phosphate and pentose phosphate pathways to impede the growth and movement 
of Xoc within rice tissues [42]  (Figure 1). In addition, the most antibacterial compounds from 
Pseudomonas include CLPs and bacteriocins. For example, syringomycin Ps-CLPs have potent 
antimicrobial activity against Rhodococcus and Micrococcus species [43]. However, a vast ma-
jority of Ps-CLPs do not show antagonistic activities and are considered ineffective against Gram-
negative bacteria; this is generally attributed to the presence of the outer membrane or peptido-
glycan layer, which hinders access to the plasma membrane [44]. However, bacteriocins such as 
pyrocin, which are ribosomally synthesized peptides and proteins, have been well studied in 
Gram-negative bacteria, particularly P. aeruginosa [45]. Pyrocins, produced by P. aeruginosa, 
are known to inhibit the cells of other P. aeruginosa strains [46]. The production of putidacin (a 
bacteriocin) expressed in Nicotiana benthamiana plants conferred resistance to P. syringae pv. 
syringae infection, indicating that the expression of bacteriocins in commercial crops may be 
an effective option for disease suppression [47]. Among the newly discovered bacteriocins are 
tailocins that resemble the tail structures of bacteriophages. They function as antimicrobials by 
binding to and puncturing closely related bacterial competitors, dissipating the membrane's 
proton-motive force and causing bacterial death [48]. 

Phytoparasitic nematodes 
Pseudomonas species suppress phytoparasitic nematodes by producing nematicidal metabolites 
and inducing systemic plant resistance [49]. For instance, P. fluorescens produces 2,4-DAPG, ef-
fectively reducing egg hatching and juvenile mobility in cyst nematodes [50]. Additionally, P. putida 
1A00316 produces dimethyl disulfide and 2-undecanone, which suppress the second juvenile 
stage (J2) of Meloidogyne incognita through both direct contact and volatile fumigation [51]. Func-
tional analysis of P. putida 1A00316 revealed that its nematicidal activity is due to cyclo-(l-isoleucyl-
l-proline) and hydrogen cyanide but not 2,4-DAPG and pyrrolnitrin [49]. By contrast, 
P. chlororaphis strain PA23 uses pyrrolnitrin and hydrogen cyanide to exert both fast and slow kill-
ing of nematodes and repellent potency [52]. Meanwhile, P. fluorescens CHA0 employs an extra-
cellular protease (AprA protease, encoded by GacA-controlled aprA gene or the gacA regulatory 
gene) to inhibit M. incognita egg hatching and induce mortality in juveniles (Figure 1)  [53]. The 
quorum-sensing regulators LasR and RhlR in P. aeruginosa trigger toxin production that causes 
rapid paralysis in Caenorhabditis elegans by activating EGL-9 genes or related pathways [54]. 

Mechanisms of Pseudomonas-driven host plant defense and growth remain 
inadequately understood 
Pseudomonas spp. play pivotal roles within the phytobiome by exerting a substantial influence on 
plant health through the induction of systemic resistance and the promotion of growth and yield
4 Trends in Plant Science, Month 2025, Vol. xx, No. xx
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(Box 1). These interactions are intricate relationships between specific elicitors derived from 
beneficial bacteria and the host plant, which involves precise recognition and binding pro-
cesses, but the bacterial pathways mediating defense, growth, and the trade-offs between 
them, remain poorly understood. So far, for example, P. putida BTP1 enhances phytoalexin 
accumulation and stimulates the lipoxygenase (LOX) pathway to prime tomato defense 
against Botrytis cinerea [61]. Meanwhile, P. simiae WCS417r enhances the capacity of to-
mato plants to convert the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) 
to ethylene that accumulates and primes the arabidopsis defense upon P. syringae pv. to-
mato DC3000 infection [62]. In addition to ethylene, jasmonic acid (JA) is reported to induce 
systemic resistance (ISR) in response to beneficial Pseudomonas spp. For example, 
arabidopsis mutants lacking JA signaling, such as jar1 and coi1, did not exhibit ISR upon ap-
plication of P. simiae WCS417r [63]. However, against foliar pathogens, ISR by P. simiae 
WCS417r is strongly dependent on the root-specific MYB72 transcription factor (Figure 2) 
[64]. Interestingly, upregulation of MYB72 in the roots is associated with iron-limited condi-
tions, indicating a complex interplay between iron availability and the elicitation of systemic re-
sistance [65,66]. Recent studies reveal distinct mechanisms by Pseudomonas spp. that 
impact lateral root development and plant growth. Pseudomonas sp. CM11, for instance, ac-
tivates the PLETHORA 3,5,7 pathway, enhancing lateral root formation, root architecture, and 
crop yield (Figure 2)  [67]. However, the ability of P. simiae WCS417 volatiles to promote 
arabidopsis growth is mediated by either auxin [68] or the ERD6-like sugar transporters 
SWEET11 and SWEET12 [69].

Insights into mechanisms underlining pathogen-inhibiting beneficial bacteria 
Despite the knowledge of how beneficial microbes interact with host plants and pathogens, 
there is still a lack of understanding regarding their beneficial mechanisms across different ge-
netic and complexity levels. This lack extends from the genetic determinants within the same 
genus to their interactions with other microbial species in both intra- and inter-species coexis-
tence. Furthermore, the signaling pathways triggered by beneficial microbial strains in re-
sponse to host plants and other microbes, including pathogens, that influence plant defense 
and growth and their trade-offs remain poorly understood. We highlight here that beneficial 
strain(s) in the phytobiome could promote a microbial shift, potentially dismantle disease com-
plexes, or amplify synergistic cooperation among indigenous communities related to functional 
traits. These additional aspects and questions might contribute to bridging the knowledge 
gaps in plant–pathogen–microbe interactions. 
Box 1. The influence of beneficial Pseudomonas on soil microbial networks and metabolic pathways for 
disease suppression remains largely unexplored 

Numerous studies have investigated the impact of microbial inoculants on soil microbial community structure [55,56]. 
However, their influence on functional shifts within microbial networks and the associated metabolic pathways enriched 
in response to biotic stress or disease remains largely unexplored. A recent study demonstrated that rhizosphere microbial 
communities and their volatilome exhibit inoculant-specific patterns when bacterial or fungal strains are applied to tomato 
plants challenged by the herbivore Spodoptera exigua. Among the tested inoculants, Pseudomonas azotoformans and 
Bacillus amyloliquefaciens exhibited distinct volatilome profiles in herbivore-infested tomato plants, but both promoted 
the production of dimethyl disulfide and benzothiazole [57], compounds potentially involved in the suppression of different 
phytopathogens [58,59]. Interestingly, nonpathogenic Pseudomonas syringae pv. tomato DC3000 derivatives triggered 
the plant’s ‘cry for help’ response and assembled a beneficial microbiome associated with distinct shifts in root exudates. 
For instance, Arabidopsis growth promotion was positively associated with a high abundance of Devosia species. This as-
sociation was accompanied by negative correlations between Devosia abundance and myristic acid and L-malic acid, 
while a positive correlation was observed with 4-hydroxypyridine [60]. Although these examples highlight important inter-
actions, further research is needed to understand how beneficial Pseudomonas spp. interact with soil microbial networks, 
metabolic pathways, and root exudates to drive disease suppression.
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Figure 2. Pseudomonas-mediated enhancement of host plant defense and growth pathways. Beneficial 
Pseudomonas spp. enhance plant defenses and promote growth through multiple mechanisms. However, more research is 
needed on microbial-mediated pathways that address the balance between plant defense and growth and alleviate the 
trade-offs. Abbreviations: ACC, 1-aminocyclopropane-1-carboxylate; LOX pathway, lipoxygenase pathway. Figure created 
with BioRender.
Host plant–bacteria genetic determinants related to plant and bacterial functional 
traits 
In the past two decades rapid advancements in sequencing technologies have revolutionized the 
ability to access whole-genome data and identify conserved genetic determinants associated 
with various traits through genome-wide association studies (GWAS) [70,71]. Advancements in 
high-throughput phenotyping technologies can handle such large datasets and provide precise 
and reproducible trait–phenotypic data, especially for complex traits [72,73]. However, while 
these studies have significantly contributed to our understanding of genetic influences on plant 
functional traits, they have largely ignored the identification of microbial genetic determinants
6 Trends in Plant Science, Month 2025, Vol. xx, No. xx
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that shape functional traits when microbes coexist with the host plant. In a complementary strat-
egy, it could be appropriate to identify genetic markers that influence plant responses and max-
imize microbial benefits. Only a limited number of studies have explored the complex relationship 
between plant genetics and the structure of the microbiome [74–76] while overlooking the iden-
tification of plant quantitative trait loci (QTLs) related to responsiveness to and harnessing of ben-
eficial microbial traits within the phytobiome. These approaches can offer tools to elucidate 
evolutionary crosstalk between bacterial signals and host-plant receptors, and lead to significant 
implications for agriculture and the breeding of plants to improve the productivity of crops. 

Plants coexist within a complex microbial network shaped by genetic heterogeneity, where intra-
and inter-species variants contribute to the diversity of beneficial traits encoded in microbial ge-
nomes. These interactions support mutualistic relationships that enhance plant fitness and 
health. Many studies have shown the successful potential of GWAS in identifying resistance 
genes in crops [77,78], but breeding for plant-beneficial microbiomes may also lead to robust 
protection of plant growth. For example, the microbiome of a Fusarium oxysporum-resistant 
bean cultivar exhibited increased expression of genes linked to chemotaxis and antifungal com-
pound biosynthesis, including phenazine and colicin V [79]. 

By contrast with plants and animals, bacteria show much less conservation of their genomes, 
making GWAS not the first choice for identifying genes associated with specific functions. There-
fore, other tool sets and approaches are necessary for identifying the important bacterial traits. 
The simple and cheap metataxonomic bacterial 16S and fungal ITS rDNA analyses have become 
standard in microbiome research. By contrast, metagenomics offers a more powerful approach, 
providing a compendium of the genes and, thereby, the composition of the microbial communi-
ties in the system. However, neither approach usually distinguishes DNA from dead and live bac-
teria, and the costs of metagenomics are often prohibitive for deep analysis of many samples. 

However, pangenomic analyses of microbial species are becoming more and more feasible as 
the number of sequenced microbial species grows rapidly. Although the core genomes of the mi-
crobial species can serve for GWAS, most of the traits probably are correlated with the accessory 
genomes that have been obtained by horizontal gene transfer. Therefore, coupling multiomics 
phenotypic data with pangenomic and accessory genome data of large collections of 
microbiomes will surely provide the most powerful way to identify the genes and understand 
their functions in the context of plant–microbial genetics. 

Finally, classical genetic approaches coupled with high-throughput screening platforms for soil, 
microbial, or host plant traits will also be a major source of knowledge in the field. For example, 
mutagenesis approaches of selected strains can rapidly identify important traits, as shown by 
screening  7488  random  transposon  mutants  in  P. fluorescens SS101, identifying the 
phosphogluconate dehydratase gene (edd), the response regulator gene (colR), and the 
adenylsulfate reductase gene (cysH) as key regulators in both plant growth promotion and ISR
[80]  (Box 2). 

Bacterial intra- and inter-species network interactions in the phytobiome 
Provocation–counterattack dynamics and the role of phylogenetic relatedness in bacterial 
interactions 
The coexistence and interaction of microbes with each other and the host plant shape microbial 
communities and their associated fitness functions [88,89]. Novel mechanisms that provide a 
deep understanding of beneficial bacteria–bacteria interactions within and across different ge-
netic trajectories and scales of pairwise or community interactions towards pathogenic bacteria
Trends in Plant Science, Month 2025, Vol. xx, No. xx 7
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Box 2. Integrated multi-omics are needed to explore inoculant–soil microbial network interactions 

Microbial inoculants can significantly alter soil microbial communities and the functional traits of host plants [56,81]. How-
ever, their impact may vary, being either beneficial or harmful, depending on microbial interactions and environmental con-
ditions. While inoculants are often selected based on laboratory performance, they may lack the ecological traits needed 
for field survival and persistence [82], making it essential to use advanced multi-omics and informatics approaches to pre-
dict their success, especially given the dynamic nature of soil microbiomes [83]. Metagenomics captures shifts in the mi-
crobial community composition and functional potential following inoculant application [84], while pangenomics reveals the 
genomic diversity and accessory gene variations that drive interactions among inoculant strains, soil microbes, and host 
plants [85]. Moreover, metaproteomics and metatranscriptomics can pinpoint active functions in both host plants and mi-
crobial communities [86], and integrating these with metabolomics or exometabolomics techniques could enable in situ 
characterization of metabolites produced within microbial cells, host plants, and the soil environment [87]. These ap-
proaches might require analytical and statistical modules that combine and deal with different datasets and facilitate the 
interpretation of complex datasets [88]. Together with validation under controlled and field conditions, these methods 
could provide a high-resolution framework to unravel complex inoculant–soil microbial networks and inform strategies 
for enhancing plant health. 
remain largely unexplored. While bacteria often employ diffusible toxins to eliminate competing 
strains, some of these substances may serve as provocation signals to stimulate a robust coun-
terattack from beneficial bacteria. This phenomenon is called provocation–counterattack 
(i.e., backfire) [90], where pathogens may inadvertently trigger defense responses in beneficial 
bacteria, which could lead to a cascade of metabolic changes aimed at neutralizing the perceived 
threat of the pathogen (Figure 3). However, the extent to which phylogenetic relatedness between 
pathogen-beneficial interacting species influences these interactions is poorly understood. To 
address this, one study proposed that computational modeling using the correlation of 
genome-wide metabolic profiles with the phylogenetic distance between the interacting bacterial 
species could help to predict the competitive and complementary behaviors among the 
interacted species [91]. In that study, the PhyloMint pipeline revealed a positive correlation be-
tween bacterial metabolic complementarity and phylogenetic distance and a negative correlation 
between metabolic competition and phylogenetic distance [91]. By contrast, phylogenetically 
close strains may share similar genetic backgrounds and metabolic pathways, increasing the like-
lihood of cross-recognition and response to provocation signals. As a result, beneficial bacteria 
may mount a more robust counterattack against pathogens by leveraging their genetic similarity 
to deploy defense mechanisms more efficiently. Harnessing this mechanism could help identify 
targeted provocation signals or compatible bacterial strains to control pathogenic bacteria and 
reduce the risk of microbial product infectivity when applied in field settings.

Synergistic coexistence of beneficial bacteria in microbial networks 
At the community level, negative interactions frequently occur when beneficial bacteria are 
cocultured pairwise or within community contexts. For instance, it has been reported that Bacillus 
and Pseudomonas spp. consistently exhibit negative interactions and coexistence [92]. Only ap-
proximately 13% of their pairwise interactions in plants and 10% in soil are characterized as pos-
itive, mostly throughout resource sharing and cross-feeding [92]. Negative interactions may also 
occur when a beneficial bacterium, effective at combating a specific pathogen in the laboratory, 
fails to demonstrate the same efficacy in field settings. This can be attributed to the fact that mi-
crobes operate within complex ecological networks, and their responses to the host environment 
are influenced by interactions with other microbes and shaped by competition for nutrients, met-
abolic signaling, or communication mediated by volatile substances. The transition from focusing 
solely on individual microbes towards investigating their collective inputs and outputs has recently 
become more feasible [93]. Therefore, there is mounting interest in elucidating the factors that un-
derlie the synergistic coexistence of bacteria and their role in maximizing their functional out-
comes. A recent model highlights how microbes use the production and consumption of 
chemical mediators to enable their coexistence, which emphasizes the importance of facilitation
8 Trends in Plant Science, Month 2025, Vol. xx, No. xx
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Figure 3. Proposed mechanisms of bacteria intra- and inter-species network interactions in the phytobiome. 
Diverse bacterial interactions within pairwise and community contexts, including provocation–counterattack responses, 
intra- and inter-species communication, and the potential impact of phylogenetic relatedness on interaction outcomes. 
Induction of shifts in the pathobiome or indigenous microbiome through the application of beneficial inoculants is also 
illustrated. Figure created with BioRender.
and self-restraint for community maintenance [2]. Consumption of chemical mediators can act as 
negative feedback on potentially dominant species and promote coexistence. Metabolic ex-
change and self-facilitation, such as the breakdown of complex compounds into consumable 
products, enhance growth rates and support coexistence [94]. However, self-restraint is crucial, 
as the accumulation of metabolic byproducts can become inhibitory [95]. Moreover, temporal dif-
ferentiation in nutrient utilization during resource pulses may alleviate competitive interactions by 
minimizing niche overlap and promoting coexistence. For example, a collection of Streptomyces 
isolates exhibited temporal variation in carbon source consumption during incubation [96]. How-
ever, studies have reported that suppressing competitor bacteriocins can impact the fitness of 
microbial communities [97]. For example, tailocins and phage tail-like protein complexes mediate 
antagonism by targeting and killing closely related bacterial competitors [98,99]. Since microbial 
community functions rely on cooperative interactions, tailocins can disrupt this balance by selec-
tively eliminating certain strains. This antagonism can lead to shifts in community composition, re-
duced diversity, and impaired network functionality. Therefore, applying tailocin inhibitors to
Trends in Plant Science, Month 2025, Vol. xx, No. xx 9
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surrounding microbial populations within 
the phytobiome? How do beneficial and 
pathogenic bacterial species interact 
within pairwise and community models? 
What is the molecular and ecological 
dialog, including microbial signaling, in 
these interactions that potentially drives 
robust responses from beneficial 
microbes towards pathogens? 

Do the beneficial bacteria respond to 
signals from the pathogen that lead to 
pathogen inhibition or trigger plant 
defense? What metabolites produced 
by beneficial or pathogenic bacteria 
are induced in the presence of other 
beneficial or pathogenic bacteria? 

How does the phylogenetic relatedness 
of interacting species influence their 
ability to induce metabolites and 
provoke responses from each other? 

Intra- and inter-species community in-
teractions between beneficial bacteria: 

To what extent does the genetic diver-
sity of microbial communities influence 
their resilience and the potential for 
synergistic coexistence toward the in-
hibition of pathogens? 

How does phylogenetic relatedness 
(intra- or inter-species interaction) influ-
ence microbial species interactions 
and their synergistic coexistence? 

How long do the negative tension 
interactions last or persist within a 
closely related phylogenetic group (for 
example, Pseudomonas intraspecies 
interaction), and can such tension be 
mitigated after being outcompeted? 

How do the presence, absence, or 
diversity of TSS, OMVs, or tailocins in-
fluence microbial synergistic coexis-
tence, and how can these factors 
enhance the effectiveness of beneficial 
bacteria in pathogen inhibition? 

Genetic determinants related to beneficial 
host plant–microbial associations: 

To what extent can the combined identifi-
cation of plant genetic markers and
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Outstanding questions 
competitive microbial members can prevent targeted killing, enhance diversity, and promote syn-
ergistic coexistence. Moreover, understanding the role of bacterial secretion systems in mediat-
ing interactions between bacterial species could provide key insights into how beneficial bacteria 
can inhibit disease-causing pathogens. The type secretion systems (TSS) and outer membrane 
vesicles (OMVs) facilitate bacterial interactions by transporting molecules such as proteins and 
toxins, which enable bacterial competition, virulence, and communication, and often significantly 
impact the interacting partner(s) [100,101]. They can operate independently or together, and 
communicate through released molecules to impact the outcomes of bacterial interactions 
[102]. These secretion systems or vesicles deliver their effectors via bacterium–bacterium con-
tact; however, recently, the delivery of toxic effectors via a contactless interaction through 
OMVs was reported [103]. Thus, correlating target patterns, such as tailocins, TSS, and OMVs 
among interacting species (in pairwise or triple interactions) with phenotypic data on functional 
traits can help us to understand and predict the network’s synergistic levels and functions. 

However, targeted agricultural practices – such as pre-cropping, organic amendments, repeated 
litter addition, and microbial inocula – can alter rhizosphere microbiomes and volatiles to enhance 
plant immunity against herbivores and pathogens and restore degraded ecosystems [104–106]. 
In particular, the interactions between microbial inocula and indigenous microbial taxa, along with 
the subsequent initial disturbance and shift of native microbial network members, remain poorly 
understood. A recent study summarized the plant microbiome potential responses or shifts in-
duced by foreign microbial inoculants [107]. These responses might involve initial shifts, followed 
by long-term stabilization of a healthy plant microbiome through enhanced diversity, increased 
beneficial taxa, and reduced pathogens via antibiosis or dysbiosis restoration [107]. 

Since the network functions of a community rely on synergistic interactions among its members, 
one might assume that common taxa are responsible for the significant upregulation of pathways 
related to adjustments in the microbial network balance and enhancement of resilience functions 
(Figure 3). Therefore, the identification of these taxa or species could be crucial to understanding 
how beneficial bacterial strains can combat disease complexes, disrupt the pathobiome, and al-
leviate its impact through mechanisms such as dividing and conquering [90]. In terms of consid-
ering the application of these concepts to the relationships among beneficial bacterial strains 
introduced to the indigenous microbiome or integrated into synthetic communities, it is crucial 
to obtain a better understanding of the mechanisms underlying synergistic coexistence. This 
knowledge could be vital to harness such beneficial interactions among species against patho-
gens or other stresses and to reduce the potential risks associated with microbial product infec-
tivity. Thus, elucidation of these mechanisms is essential to optimize the efficacy and safety of 
such microbial interventions in various contexts, ranging from agriculture to human health. 

Concluding remarks 
Our understanding of how beneficial bacteria interact with pathogens and host plants is still evolv-
ing, yet significant gaps remain in elucidating the underlying genetic and ecological mechanisms. 
The integrated application of genomic approaches to identify microbial and plant genetic markers 
associated with beneficial traits holds promising potential for plant breeding programs. These 
programs could be used to harness and optimize plant–microbe associations to enhance crop 
productivity. Additionally, a better understanding of the role of microbial secretion systems and 
phylogenetic relatedness in beneficial interactions is crucial to developing strategies to foster syn-
ergistic coexistence and design stable synthetic microbial communities. This knowledge could 
also clarify why certain microbial products underperform in field conditions and help to identify 
chemical signaling mediators or specific bacterial genera that enhance synergistic behaviors 
within microbial networks. These insights could guide the precise manipulation of microbial
10 Trends in Plant Science, Month 2025, Vol. xx, No. xx



conserved beneficial microbial traits be 
used to enhance crop–microbial associa-
tions, and how might this knowledge be 
implemented in agricultural practices and 
plant breeding programs?
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interactions through targeted agricultural practices, to promote ecological equilibrium and sus-
tainable management of microbial communities (see Outstanding questions).
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