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ABSTRACT Ochrobactrum intermedium strain SA148 is a plant growth-promoting
bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report
the 4.9-Mb draft genome sequence of this strain, highlighting different pathways
characteristic of plant growth promotion activity and environmental adaptation of
SA148.

The DARWIN21 project (http://www.darwin21.net/) is an initiative established with
the aim of expanding our knowledge on microbial life in deserts. A diverse number

of bacterial species were isolated from both soil and plants and were characterized for
their potential application in modern agriculture. Within the DARWIN21 collection,
diverse bacterial species show enhanced growth of the model plant Arabidopsis thali-
ana under stress conditions (1, 2). A number of bacterial Ochrobactrum species were
isolated on the basis of their plant growth-promoting trait. Ochrobactrum species are
widespread in the environment and can colonize a wide variety of habitats, including
soil, plants, animals, and humans (3). In an attempt to decipher the genetic basis of the
plant growth-promoting activity of a member of the Ochrobactrum species, the ge-
nome of strain SA148 was sequenced.

SA148 strain was isolated from the soil samples collected in the Jizan region
(16°56.475=N, 42°36.694=E) in the Kingdom of Saudi Arabia. Based on the 16S rRNA gene
sequences, the SA148 strain is closely related (99% gene similarity) to Ochrobactrum
intermedium strain LMG3301 (accession no. NR_026039.1) (1). The genomic DNA of the
SA148 strain was extracted using the Qiagen DNeasy blood and tissue kit, according to
the manufacturer’s protocol. The DNA was then sequenced using paired-end Illumina
MiSeq, and the library was constructed as described previously (4). Contig assembly
was done with SPAdes assembler version 3.6 (5), with a 1-kb contig cutoff size. De novo
assembly of MiSeq reads for strain SA148 resulted in 38 contigs with a total length of
4,918,899 bp, a mean contig size of 129,445 bp, an N50 of 419,572 bp, L50 reached with
five contigs, and a genome G�C content of 57.5%. MegaBLAST (6) searches of strain
SA148 concatenated genomes against the NCBI reference genome database (http://
www.ncbi.nlm.nih.gov/genome/) revealed that the closest relative genomes to strain
SA148 was O. intermedium strain LMG3301, with sequence coverages of 50% and 35%
of chromosomes I and II (accession no. ACQA0100000.1) and similarities of 98% and
99%, respectively. The annotation of strain SA148 was carried out using the default
INDIGO pipeline (7), with the exception of open reading frame (ORF) prediction by
FragGeneScan (8). SA148 has 3,714 ORFs, three rRNA, 51 tRNA, and 64 noncoding RNA
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(ncRNA). The annotation predicted a number of enzymes, such as glyphosate resistance
enzyme 3-phosphoshikimate 1-carboxyvinyltransferase (EC 2.5.1.19) first identified in
Ochrobactrum anthropi (9), which is targeted by the herbicide glyphosate. We also
detected mannitol-1-phosphate 5-dehydrogenase (EC 1.1.1.17) (gene mtlD) as a part of
an osmoprotectant synthesis pathway that can be utilized to improve stress tolerance
against temperature fluctuation (10). Moreover, a number of genes related to growth-
promoting activity, including gene-coding clusters for phosphate solubilization with six
genes for pyrroloquinoline quinone synthesis (PQQ) (EC 1.1.5.2) and glucose
1-dehydrogenase (GCD) (EC 1.1.5.2) were found. The genome analysis highlights the
presence of 3-phytase (EC 3.1.3.8) (11) and acid phosphatase (EC 3.1.3.2) (12), two
enzymes that aid plants during phosphate starvation.

Accession number(s). The genome of Ochrobactrum intermedium SA148 was de-

posited at DDBJ/EMBL/GenBank under the accession no. LWEA00000000. The version
described in this paper is the first version, LWEA01000000.
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