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MAPK cascade signalling networks in plant defence
Andrea Pitzschke1,3, Adam Schikora2,3 and Heribert Hirt1,2
The sensing of stress signals and their transduction into

appropriate responses is crucial for the adaptation and survival

of plants. Kinase cascades of the mitogen-activated protein

kinase (MAPK) class play a remarkably important role in plant

signalling of a variety of abiotic and biotic stresses. MAPK

cascade-mediated signalling is an essential step in the

establishment of resistance to pathogens. Here, we describe

the most recent insights into MAPK-mediated pathogen

defence response regulation with a particular focus on

the cascades involving MPK3, MPK4 and MPK6. We also

discuss the strategies developed by plant pathogens to

circumvent, inactivate or even ‘hijack’ MAPK-mediated

defence responses.
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Introduction
MAPK cascades are highly conserved modules in all

eukaryotes. In plants, MAPK pathways are involved in

the regulation of development, growth, programmed cell

death and in responses to a diversity of environmental

stimuli including cold, heat, reactive oxygen species, UV,

drought and pathogen attack [1]. Via a phosphorelay

mechanism these cascades, minimally composed of a

MAPKKK (MAPK kinase kinase), a MAPKK (MAPK

kinase) and a MAPK, link upstream receptors to down-

stream targets. The Arabidopsis genome contains about

110 genes coding for putative MAPK pathway com-

ponents: 20 MAPKs, 10 MAPKKs and more than 80

MAPKKKs [2]. Scaffolding proteins or specific expression

of distinct components, confer the specificity to MAPK

components engaged in a module. So far, only a few

MAPK cascade components have been studied in detail.

The Arabidopsis MAPKKKs YODA, ANP2/ANP3 and
www.sciencedirect.com
MP3K6/MP3K7 function in development [3��,4–6],

MEKK1 and ANP1 act in the environmental stress

response [7�–9�], whereas CTR1 plays a pivotal role in

ethylene signalling [10]. Among the 10 MAPKKs, MKK1/

MKK2, MKK4/MKK5 as well as MKK3, MKK7 and

MKK9 have been analyzed [11,12,13��,14��,15,16�,17,

18��,19,20��]. Finally, 8 of the 20 MAPKs have been

studied to various degrees (for review, see [1]).

The best-characterized MAPKs are MPK3, MPK4 and

MPK6, all of which are activated by a diversity of stimuli

including abiotic stresses, pathogens and oxidative stress.

While MPK4 negatively regulates biotic stress signalling,

MPK3 and MPK6 act as positive mediators of defence

responses. The key role of these three MAPKs for normal

plant growth and development is evidenced by the

severely dwarfed phenotype of mpk4 and the embryo

lethal phenotype of mpk3/mpk6 double mutants

[14��,16�,21].

In this review, we focus on the activation of MAPK

cascades involving MPK3, MPK4 and MPK6, after the

perception of pathogen-associated molecular patterns

(PAMPs), and on strategies developed by specific plant

pathogens to deal with MAPK-mediated defence

responses.

PAMP-triggered activation of MAPK cascades
In the ongoing battle between plants and pathogens,

plants have adapted the capacity to recognize pathogens

through PAMPs via cell surface-located pathogen-recog-

nition receptors. The activation of these receptors

induces convergent intracellular signalling pathways in

plant cells, which ultimately result in the establishment of

PAMP-triggered immunity [22]. PAMPs are mostly small

molecules derived from different pathogen structures

common to a class of pathogens. Consequently, the

responses to PAMPs are not specific, but rather reflect

a response to a given group of pathogens. Despite the

large variety of known PAMPs, PAMP receptors in plants

have so far only been identified for flagellin, the trans-

lation elongation factor EF-Tu and chitin [23,24��,
25,26,27��].

PAMP-triggered immunity requires a signal transduction

from receptors to downstream components via the

MAPK cascade, and many of the known PAMPs were

shown to activate MAP kinases. The flagellin derived

peptide flg22 triggers a rapid and strong activation of

MPK3, MPK4 and MPK6 [28]. MPK4 and MPK6 are also

activated by harpin proteins, which are encoded by hrp
(hypersensitive response and pathogenicity) genes in
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many plant pathogenic bacteria. This activation is fol-

lowed by the induction of pathogenesis-related (PR)

genes [29], encoding for proteins with antimicrobial

activities. Similarly, various NLPs (necrosis and ethyl-

ene-inducing peptide1-like proteins) trigger MAPK acti-

vation and induce defence responses [30].

MPK3/MPK6 are necessary to induce defence
responses
MPK3 and MPK6 are closely related proteins that show a

high level of functional redundancy. Both MAPKs are key

regulators of a diverse set of processes including abscis-

sion, stomatal development, signal various abiotic stresses

and defence response to bacterial and fungal pathogens

(for review see [1]).

On the basis of experiments using transient expression in

protoplasts, the MAPK module MEKK1-MKK4/MKK5-

MPK3/MPK6 was proposed to be responsible for flg22

signal transmission [20��]. The involvement of MEKK1

in flg22-induced MKK4/MKK5-MPK3/MPK6 signalling

is unlikely, since mekk1 mutant plants are compromised in

flg22-triggered activation of MPK4, but show normal

activation of MPK3 and MPK6 [9�]. However, besides

this uncertainty, modules involving the MAPKKs MKK1/

MKK4/MKK5/MKK9 and the MAPKs MPK3/MPK6 are

clearly implicated in different defence strategies.

MPK3/MPK6 are compulsory in camalexin
biosynthesis
Intensive research has been attributed to plant defence

responses to Botrytis cinerea. This fungal pathogen triggers

the synthesis of camalexin, a major phytoalexin in Arabi-
dopsis. Camalexin is required for resistance to B. cinerea, as

shown by the susceptible phenotype of the phytoalexin
deficient 3 ( pad3) mutant [32]. The key role of MPK3/

MPK6 in camalexin-based fungal resistance is demon-

strated by the fact that mpk3 and mpk6 mutants are

compromised in camalexin production and consequently

more susceptible to B. cinerea [31]. Recent data implicate

a MAPK cascade composed of MKK4/MKK5 and MPK3/

MPK6 in response to fungal pathogens, based on the

observation that activation of MPK3/MPK6 in conditional

gain-of-function (GOF) plants for MKK4/MKK5 or

MEKK1/MKKKa is sufficient to induce accumulation

of camalexin, even in the absence of pathogen attack

[31]. However, another MAPKK, MKK9, whose upstream

MAPKKK is unknown, is apparently also involved in

camalexin biosynthesis via MPK3/MPK6: Conditional

MKK9-GOF plants have elevated MPK3/MPK6 activity

and produce even more camalexin after transgene induc-

tion than MKK4-GOF or MKK5-GOF plants [17]. In

addition, the MKK9-MPK3/6 is involved in the biosyn-

thesis of ethylene [17] a plant hormone involved in

defence responses. Whether both MKK4/MKK5 and

MKK9 act as upstream regulators of MPK3/MPK6 in

camalexin biosynthesis will have to be verified.
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MPK3 is required for stomatal immune
responses
Stomata are indispensable for gas exchange and transpira-

tion. However, in terms of pathogen attack stomata are

weak points, since they serve as ‘entrance gate’ for various

microbial invaders. A tight regulation of stomatal opening

and closure, therefore, is pivotal not only to withstand

unfavourable environmental conditions, such as drought

and heat but also to restrict pathogen invasion. Recent

studies implicate MAPK cascades in stomatal regulation

in both abiotic and biotic stress responses.

MPK3/MPK6 are key players in stomatal development

and stomatal dynamics [16�]. Upon drought, stomatal

closure is mediated through the phytohormone ABA

and involves MKK1, MPK3 and MPK6 [33,34].

Pathogen-induced stomatal closure restricts the invasion

of many bacteria and is a part of the plant innate immune

response. The pathogen Xanthomonas campestris pv. Cam-
pestris (Xcc) excretes a cell–cell signal-regulated viru-

lence factor, which reverts stomatal closure induced by

bacteria and ABA [33] and which can complement the

infectivity of Pseudomonas syringae pv. tomato (Pst)
mutants deficient in the production of coronatine, a toxin

required to overcome stomatal defence. Recent findings

suggest a unique function of MPK3 in the stomatal innate

immunity response. Guard cell specific Arabidopsis

MPK3 antisense plants are more sensitive to Pst corona-

tine-deficient mutants. Their stomata close normally

upon ABA [33], but are unresponsive to bacteria. More-

over, in these plants, Xcc extracts do not revert bacteria-

induced or ABA-induced stomatal closure. Whether

pathogen-induced and ABA-induced stomatal closures

are signalled via a common MAPK cascade remains to be

investigated.

Negative regulation of defence responses by
the MPK4 pathway
A number of studies identified the MEKK1-MKK1/2-

MPK4 cascade in pathogen signalling. Using genetic

approaches, independent reports show MKK1 and

MKK2 as functionally redundant activators of MPK4

[13��,14��,35��], thus confirming previous experimental

evidence that MKK1 and MKK2 interact with MPK4

[36,37].

Mekk1, mkk1/mkk2 double and mpk4 mutants are severely

dwarfed and accumulate high amounts of reactive oxygen

species [7�–9�,13��,14��,38]. These abnormalities are

most probably due to their drastically enhanced SA levels

and can be partially reverted by expression of a bacterial

SA hydrolase [38]. Mekk1, mkk1/mkk2 double and mpk4
mutants also display spontaneous cell death, upregulation

of pathogenesis-related genes and enhanced resistance to

pathogens. Therefore, a negative regulatory role of the

MEKK1-MKK1/2-MPK4 module in SA and H2O2 pro-

duction has been proposed.
www.sciencedirect.com
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The mekk1, mkk1/2 and mpk4 mutants have strongly

overlapping expression profiles, with many defence-

related genes being similarly deregulated [14��]. Inter-

estingly, comparative transcriptome studies have impli-

cated that a subset of the MEKK1-dependent MPK4

responses are regulated independently of MKK1 and

MKK2 [35��]. In addition, based on the significant pro-

portion of genes exclusively deregulated in mekk1
mutants, MEKK1 seems to function in other as yet

unknown pathways involving neither MKK1/MKK2 nor

MPK4. The WRKY53 transcription factor may be par-

tially responsible for the mekk1-specific gene set, as

MEKK1 directly interacts with WRKY53 and alters the

activity of this transcription factor [39�]—a unique short

cut of MAPK signalling. The interaction of MKK1-MPK4

and MKK2-MPK4 was lately confirmed in vivo, and the

complexes were located at the plasma membrane and in

the nucleus [13��]. Three proteins have been identified as

substrates of MPK4: WRKY33, WRKY25 and MKS1 [40].

WRKY33 was previously shown to interact with MKS1 in
yeast and in vivo [38]. Although no MPK4-WRKY33

interaction was originally observed, recent results propose

an MKS1-dependent MPK4-WRKY33 interaction [41��].
Immunoprecipitation from nuclear extracts revealed the

existence of a ternary MKS1-MPK4-WRKY33 complex.

The recruitment of WRKY33 to this complex depends on

the phosphorylation state of MPK4. After activation,

MPK4 multiphosphorylates MKS1, resulting in the

release of WRKY33 from the ternary complex. According

to this model, free WRKY33 then induces transcription of

its target genes [41��], providing a molecular mechanism

for the negative regulation of defence signalling by

MPK4. In the absence of functional MPK4, WRKY33

(and probably other MPK4 targets) would not be seques-

tered in the complex any more, leading to activation of

gene expression even in the absence of pathogens.

How pathogens manipulate MAPK signalling
Pathogens have evolved strategies to overcome defence

responses. This can be achieved through inactivation of

PAMP-induced signalling pathways by targeting the

MAPK cascade components.

The pathogen Pseudomonas syringae injects a number of

effectors into plant cells. Among these, AvrPto and AvrP-

toB interact with the FLS2 receptor and its co-receptor

BAK1. AvrPtoB catalyses the polyubiquitination and

subsequent proteasome-dependent degradation of

FLS2 [42��,43]. This process is enhanced when FLS2

binds to flg22. AvrPto can interact with BAK1 and thereby

prevent its binding to FLS2 [42��]. In this way, both

AvrPto and AvrPtoB interrupt signalling to the down-

stream MAPK module.

Pseudomonas syringae has yet another factor that can

directly interact with the MAPK cascade components:

HopAI1 is a phosphothreonine lyase that dephosphory-
www.sciencedirect.com
lates the threonine residue at which MAPKs are activated

by their upstream MAPKKs [44�]. HopAI1 (when

expressed in planta) directly interacts with MPK3 and

MPK6, thus attenuating flg22-induced MAPK activation

and downstream defence responses. Strikingly, HopAI1 is

also present in animal/human pathogens such as Shigella
spp. (OspF) [45,46] and Salmonella spp. (SpvC) [47],

where it interacts with the MAPKs ERK1/2 and p38.

HopPtoD2 is another bacterial effector from P. syringea
pv. tomato that displays phosphatase activity [48]. Expres-

sion of HopPtoD2 in tobacco cells suppresses the cell

death provoked by expression of the constitutively active

MAPKK variant NtMEK2DD. However, HopPtoD2 does

not inhibit flg22-induced MAPK activation in Arabidopsis.

Agrobacterium hijacks the MPK3/MPK6
pathway
An entirely different mode of host MAPK signalling

manipulation by pathogens has recently been unravelled.

The soil-borne pathogen Agrobacterium tumefaciens carries

flagellin variants that are non-detectable by the Arabi-
dopsis FLS2 [24��,49], yet it triggers a typical innate

immune response through the EF-Tu protein. The

EF-Tu-derived peptide elf18 is sufficient to trigger the

defence response. Interestingly, the receptors for flg22

and efl18, FLS2 and EFR, respectively, belong to the

same subfamily of LRR-RLKs, LRRXII. Moreover, elf18

and flg22 induce an overlapping set of responses, in-

cluding extracellular alkalisation, a rapid activation of

MAPKs and the induction of similar response genes

[27��]. It is tempting to speculate that also other members

of the LRRXII subfamily function as PAMP receptors

and it will be interesting to see whether their signalling

converge in the same pathways.

Agrobacterium tumefaciens is the causal agent of crown galls.

It infects plants by integrating a segment of its DNA

(transfer DNA) into the host chromosomal DNA. efr1
mutants fail to recognize EF-Tu and, presumably owing

to reduced defence responses, are more easily trans-

formed by Agrobacterium [27��]. However, since MAPK

activities in efr1 have not been assessed, and since Agro-
bacterium contains other PAMPs in addition to EF-Tu, the

importance/contribution of MAPKs in EF-Tu-triggered

defence remains unclear.

Initiation of defence signalling cascades in their host can

be turned into a benefit for plant pathogens: The acti-

vation of MPK3 in response to flg22 or Agrobacterium
results in the phosphorylation and subsequent nuclear

translocation of the host protein VIP1 (virE2 interacting

protein 1). Agrobacterium has hijacked VIP1 for delivering

their T-DNA into the plant nucleus, where it integrates

into the host genome [50,51��]. Because VIP1 does not

only serve as nuclear shuttle for the pathogenic T-DNA

complex but can also induce the expression of defence
Current Opinion in Plant Biology 2009, 12:421–426
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Figure 1

PAMP-induced MAPK cascades in the plant defence to bacterial and fungal pathogens. PAMP-triggered activation of MAPK cascades initiates the

synthesis of pathogen-induced synthesis of PR proteins (e.g. glucanases, chitinases), cell wall depositions, stomatal closure and phytoalexin (e.g.

camalexin) synthesis. Together, these modifications result in pathogen resistance. Microbial factors interfering with the signal transduction are shown

in blue. Activated transcription factors (TF) are shown as semicircles. Unknown receptors and MAPK cascade components are indicated by ‘?’.
genes [51��], nuclear VIP1 would be counteracting Agro-
bacterium invasion. Agrobacterium overcomes this problem

through targeting nuclear VIP1 for proteasome degra-

dation by the Agrobacterium virulence factor VirF, which

encodes an F-box protein [52].

Conclusions
By amplifying and transducing pathogen-derived signals

perceived at membrane receptors and transducing these

signals into altered gene expression, plant MAPK

modules play a key role in the induction of defence

mechanisms (Figure 1).

MAPKs are also prominent targets for inactivation by

effector proteins. Interestingly, the mechanisms of effec-

tor-mediated interruption of MAPK signalling employed

by plant and animal pathogens are similar. So far only a

few components of MAPK cascades have been

thoroughly studied in plants. Three reports described
Current Opinion in Plant Biology 2009, 12:421–426
the systematic attempts to interconnect the MAPKK

and MAPKs with their targets [53,54�,55]. The identifi-

cation and in planta verification of additional MAPKKK-

MAPKK-MAPK modules, discovery of downstream tar-

gets and the regulated processes will be a future challenge

to disentangle the sophisticated network of plant MAPK

signalling pathways.
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