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Abstract
Cellulomonas sp. JZ18 is a gram-positive, rod shaped bacterium that was previously isolated from the root endosphere of the 
perennial desert tussock-grass Panicum turgidum. Genome coverage of PacBio sequencing was approximately 199X. Genome 
assembly generated a single chromosome of 7,421,843 base pairs with a guanine-cytosine (GC) content of 75.60% with 
3240 protein coding sequences, 361 pseudo genes, three ribosomal RNA operons, three non-coding RNAs and 45 transfer 
RNAs. Comparison of JZ18′s genome with type strains from the same genus, using digital DNA–DNA hybridization and 
average nucleotide identity calculations, revealed that JZ18 might potentially belong to a new species. Functional analysis 
revealed the presence of genes that may complement previously observed biochemical and plant phenotypes. Furthermore, 
the presence of a number of enzymes could be of potential use in industrial processes as biocatalysts. Genome sequencing 
and analysis, coupled with comparative genomics, of endophytic bacteria for their potential plant growth promoting activities 
under different soil conditions will accelerate the knowledge and applications of biostimulants in sustainable agriculture.

Introduction

Cellulomonas species are Gram-positive, rod-shaped, G + C 
rich bacteria belonging to the phylum Actinobacteria. A 
major distinguishing characteristic of this genus is their abil-
ity to breakdown cellulose and hemicellulose by xylanases, 
endo- and exoglucanases [1, 2]. Indeed, different species of 
Cellulomonas have been studied and shown to have a poten-
tial for biotechnological applications as well as, recently, 
as biostimulants and biocontrol agents in agriculture. For 

example, xylan degradation and production of β-xylanase 
and β-xylosidase activities were studied in C. uda [3], C. 
fimi [4] and C. pachnodae [5]. Cellulomonas flavigena was 
shown to produce a set of enzymes, cellulases, xylanases 
and endoglucanases, for the breakdown of plant biomass 
such as cellulose and hemicellulose [6–9], which indicate 
their potential for use in biotechnological applications [10].

Cellulomonas species were previously isolated from the 
roots Mexican husk tomato plants (Physalis ixocarpa) [11]. 
Zinniel et al. [12] isolated Cellulomonas sp. SE017 from 
sorghum (Sorghum bicolor) and claimed their ability to col-
onize wheat (Triticum aestivum), potato (Lycopersicon escu-
lentum), and tomato (Solanum tuberosum). They were also 
shown to colonize the rhizosphere and phyllosphere of win-
ter wheat (Triticum aestivum) and pea (Pisum sativum) and 
to promote the nodulation and shoot and root biomass of pea 
[13, 14]. Co-inoculation of C. flavigena with other bacterial 
genera was shown to promote growth of rice (Oryza sativa) 
[15]. These studies suggest the ability of Cellulomonas to 
promote plant growth and, thus, to be used as biostimulants 
in agriculture. In addition, Takegawa et al. [16] previously 
demonstrated the ability of a polysaccharide lyase (possibly 
a pectate lyase), isolated from a soil bacterium that was iden-
tified as Cellulomonas sp., to degrade Fusarium and Gibber-
ella acidic polysaccharides. The authors speculate a role of 
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these acidic polysaccharides in the two pathogenic fungi in 
host-parasite interactions and, thus, species of Cellulomonas 
could play a role as biocontrol agents in agriculture.

Here, we report the genome of Cellulomonas sp. JZ18, an 
endophyte isolated from the root endosphere of the peren-
nial desert tussock-grass Panicum turgidum in Jizan, Saudi 
Arabia [17]. It was previously identified using biochemical 
assays to possess the ability to tolerate growth under salt, 
osmotic and heat stresses, colonize Arabidopsis root surface 
and produce biofilms and exoproteases [17].

Materials and Methods

Growth Conditions and Genomic DNA Extraction

Isolate JZ18 was grown in/on tryptone soy broth/agar (g/L: 
Bacto tryptone-15; Bacto soytone-5; NaCl-5; agar-15) at 
28 °C. Fresh, pure bacterial cultures were used for total 
genomic DNA extraction using Sigma’s GenElute bacterial 
genomic DNA kit (Sigma Aldrich) following the manufac-
turer’s protocol. DNA quality and quantity were assessed 
by 0.7% agarose gel electrophoresis (35 V, 12 h), NanoDrop 
2000 (Thermo Fisher Scientific) and Qubit dsDNA BR assay 
kit (Thermo Fisher Scientific).

Genome Sequencing and Assembly

DNA was size selected to 10 kb using the BluePippin™ 
Size-Selection System (Sage Science), following the “High-
PassTM DNA Size Selection of ~ 20  kb SMRTbellTM 
Templates” manual. The SMRTbell™ template library was 
prepared according to the instructions from Pacific Bio-
sciences’s “Procedure and Checklist—20 kb Template Prep-
aration using BluePippin™ Size-Selection System” guide. 
The SMRT cells were run at the KAUST Bioscience Core 
Labs on the PacBio RSII (Pacific Biosciences) sequencing 
platform using P6-C4 chemistry. One SMRT cell was run, 
taking one 360 min movie. Raw data from PacBio’s platform 
was assembled into a draft assembly using the Hierarchical 
Genome Assembly Process v4 (HGAP4) [18] from PacBio’s 
SMRT Analysis pipeline v2.3.0.140936 patch 5. The assem-
bly workflow can be broken down to three main steps: a pre-
assembly step that mapped single pass reads to seed reads to 
generate consensus reads that were then quality trimmed. De 
novo assembly was done using the overlap layout consensus 
approach. The final step is consensus polishing using Quiver 
to reduce indels and base substitution using quality scores 
embedded in the raw data. To determine whether assembled 
contigs are circular, dot plots were generated using Gepard 
[19] for detecting overlaps at the peripheries. Overlaps were 
collapsed and the genome was closed using Minimus2 [20]. 
Finally, additional polishing rounds were performed using 
Quiver by applying quality scores from raw data to correct 

for indels and base substitutions where the output from one 
round was used as input to the next round.

Genome Annotation

The annotation of the genome was performed using 
NCBI’s prokaryotic genome annotation pipeline (PGAP) 
[18, 19]. Function and pathway analysis was also per-
formed using BlastKOALA web tool of KEGG database 
[20]. The identification of gene clusters for the biosyn-
thesis of secondary metabolites was performed using ant-
iSMASH v.4.2.0 [21].

Phylogenetic Analysis

The 16S rRNA gene sequences of JZ18 were predicted 
using RNAmmer 1.2 and the most common and identical 
sequences of the three copies were compared to known 
sequences listed in NCBI’s GenBank using BLASTn 
[22]. The sequences with the highest similarity in terms 
of sequence identity and query coverage, along with other 
Cellulomonas strains from similar and distant genera were 
used for the phylogenetic tree construction. Alignment of 
16S rRNA sequences and construction of phylogenetic 
tree was performed as previously described [23]. For dis-
tinguishing between Cellulomonas strains at species level, 
digital DNA–DNA hybridization (dDDH) and average 
nucleotide identity (ANI) calculations were performed. 
Pairwise BLAST-based average nucleotide identity values 
(ANIb) were obtained using JSpecies [24]. The genome 
sequence data were uploaded to the Type (Strain) Genome 
Server (TYGS), a free bioinformatics platform available 
under https​://tygs.dsmz.de, for a whole genome-based taxo-
nomic analysis [25]. All pairwise comparisons among the 
set of genomes were conducted using GBDP and accurate 
intergenomic distances inferred under the algorithm ’trim-
ming’ and distance formula d5 [26]. 100 distance replicates 
were calculated each. Digital DDH values and confidence 
intervals were calculated using the recommended settings 
of the GGDC 2.1 [26].

Sequence Accession Number

The data for the bacterial genome assembly of Cellulomonas 
sp. JZ18 and sequencing were deposited in NCBI/DDBJ/
EMBL database under the accession number CP045245, 
BioSample SAMN13011526 (https​://www.ncbi.nlm.nih.
gov/biosa​mple/13011​526).
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Results and Discussion

Sequencing of Cellulomonas sp. JZ18 using PacBio tech-
nology (estimated genome coverage of 199X) resulted in a 
chromosome of 4,043,325 bp with a GC content of 75.60% 
(Table 1). Annotation pipeline generated a total of 3658 
ORFs of which 3240 are protein coding sequences (CDS), 
361 pseudo genes, three rRNA operons, three ncRNAs and 
45 tRNAs.

Phylogenetic analysis based on 16S rRNA sequences 
of JZ18 and closest relatives (based on top BLAST hits) 
showed clustering of JZ18 with Cellulomonas sp. CPCC 
204,705 and Cellulomonas sp. Z28 (Fig. 1), which represent 
the type strains of C. telluris and C. shaoxiangyii [27, 28]. 
Whole-genome sequence phylogenetic analysis of JZ18 with 
other Cellulomonas type strains revealed clustering of JZ18 
within a clade of C. telluris CPCC 204705T and C. shaoxi-
angyii Z28T (Fig. 2). Further analysis revealed displays the 
highest similarity with C. iranensis NBRC 101,100 and C. 
flavigena DSM 20,109 with ANIb values of 80.73% and 
80.26%, respectively (ESM_2 Table S1). JZ18 also displayed 
high similarity with C. telluris CPCC 204705T and C. 
shaoxiangyii Z28T with dDDH values of 72.8% and 50.2% 
(formula d0), respectively (Table 2; ESM_2 Table S2). How-
ever, the ANIb and dDDH values do not exceed the species 
cut-off of 95% and 70%, respectively. Based on these results, 
JZ18 may potentially be a new species.

Functional analysis (BlastKOALA) of the chromosome 
was performed and identified 1,564 genes (43.4%) with 
assigned functions. Genome mining revealed the presence 
of genes involved in abiotic stress responses and tolerance 
(e.g. detoxification systems, trehalose and glutamate bio-
synthesis), disruption and degradation of plant cell walls 

Table 1   Summary of JZ18 genome features

Feature Chromosome

Genome coverage 199X
Genome size (bp) 4,043,325
GC content (%) 75.60
ORF 3658
Gene density (genes/Mbp) 756.31
CDS 3240
Pseudo genes 361
rRNAs 9
16S-23S-5S operons 3
ncRNAs 3

Fig. 1   Phylogenetic analysis of JZ18. Phylogenetic tree generated 
using 16S rRNA sequence alignment using MUSCLE, evolution-
ary relationships inferred using the Neighbor-Joining method and 
the evolutionary distances computed using the Kimura 2-parameter 

method. GenBank accession numbers of isolates are presented before 
taxonomic names and type strains are indicated by T. The percentage 
of replicate trees in which the associated taxa clustered together in the 
bootstrap test (1000 replicates) are shown next to the branches
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Fig. 2   Genome blast distance phylogeny (GBDP) tree of JZ18 with 
Cellulomonas type strains based on whole-genome sequences. Tree 
inferred with FastME 2.1.6.1 from GBDP distances calculated from 
genome sequences [40]. The branch lengths are scaled in terms of 

GBDP distance formula d5. The numbers above branches are GBDP 
pseudo-bootstrap support values > 60% from 100 replications, with an 
average branch support of 71.7%. The tree was rooted at the midpoint 
[41]. Type strains are indicated by T

Table 2   Pairwise comparisons 
of Cellulomonas sp. JZ18 
versus type strain genomes

* The following table contains the pairwise dDDH values between JZ18 genome and the selected type strain 
genomes. The dDDH values are provided for the three different GBDP formulas: d0 (a.k.a. GGDC formula 
1): length of all HSPs divided by total genome length; d4 (a.k.a. GGDC formula 2): sum of all identities 
found in HSPs divided by overall HSP length; d6 (a.k.a. GGDC formula 3): sum of all identities found in 
HSPs divided by total genome length

Subject strain dDDH* Biosample accession

(d0, in %) (d4, in %) (d6, in %)

Cellulomonas telluris CPCC 204705T 72.8 35 63.2 SAMN09926135
Cellulomonas shaoxiangyii Z28T 50.2 27.3 43.1 SAMN11356698
Cellulomonas flavigena DSM 20,109 29.8 22.8 27.1 SAMN02598424
Cellulomonas oligotrophica JCM17534 29.4 22.4 26.7 SAMN11869273
Cellulomonas oligotrophica DSM 24,482 31.1 22.4 27.9 SAMN05878280
Cellulomonas fimi ATCC 484 24.9 21.5 23.2 SAMN00713615
Cellulomonas fimi NCTC 7547 24.9 21.5 23.2 SAMEA24553168
Cellulomonas massiliensis JC225 23.1 21.3 21.8 SAMEA2272357
Cellulomonas composti NBRC 1,00,758 20.6 21.2 19.8 SAMD00166262
Cellulomonas uda NBRC 3747 22.6 21.1 21.3 SAMD00093690
Cellulomonas gelida JCM 1490 22 21 20.9 SAMD00245252
Cellulomonas uda CECT 4284 22.7 21 21.5 SAMN12025146
Cellulomonas terrae NBRC 1,00,819 20.4 21 19.6 SAMD00166263
Isoptericola cucumis CCM 8653 15.6 20.4 15.6 SAMD00244873
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and their constituents (e.g. xylan and cellulose degradation, 
xylose and cellobiose metabolism), colonization, and motil-
ity and chemotaxis (ESM_2 Table S3). These genes may be 
involved in previously demonstrated salt, osmotic and heat 
stress in vitro survival phenotypes [23]. However, earlier 
experiments demonstrated the absence of swimming/swarm-
ing motility, which complements the absence of important 
genes required for flagellar assembly (ESM_1 Fig. S1). A 
number of xylanses and an endoglucanase were also found 
and could contribute to potential application for degradation 
of plant biomass as discussed previously. Interestingly, C. 
telluris CPCC 204705T that was isolated from soil sam-
ples in the Badain Jaran desert, and which displayed highest 
similarity to JZ18 based on the phylogenetic analysis, also 
produces endoglucanase [27].

AntiSMASH analysis revealed the presence of four 
clusters for secondary metabolite biosynthesis, three 
of which were similar to known clusters: Carotenoid 
(710,466–731,419, BGC0000644, 50% similarity), Desfer-
rioxamine B (2,762,393–2,815,397, BGC0000941, 80%) 
and Alkylresorcinol (3,770,187–3,782,112, BGC0000282, 
100%). Alkylresorcinols are phenolic lipids that occur in 
plants, fungi and bacteria and have been associated with a 
range of biological activities such as antioxidant, cytotoxic, 
antimicrobial and signaling properties [29–31]. The genome 
of JZ18 also contains a gene encoding a cutinase (ESM_2 
Table S3), a hydrolase that was originally isolated from the 
fungal plant pathogen Fusarium solani, which could play a 
role in pathogenicity [32, 33].

A gene encoding a pectate lyase is also present and could 
contribute to plant colonization or virulence [34, 35], but 
also antifungal potential as discussed in the introduction. 
Indeed, JZ18 was able to colonize Arabidopsis roots but 
failed to promote plant growth under salinity stress condi-
tions and had negative growth effects [23]. Despite Arabi-
dopsis not being the native host of JZ18, a previous study 
found Cellulomonas species in the leaves and roots of Arabi-
dopsis thaliana [36]. In addition to potentially helping in 
biocontrol activity, the cutinase and pectate lyase could be 
of interest as biocatalysts in industrial processes [37–39]. 
Whether these enzymes, cutinase, endoglucanase, xyla-
nase and pectate lyase, have a superior activity to enzymes 
currently used in industry has to be tested. Nevertheless, 
genome sequencing of bacterial endophytes and the bio-
chemical, genomic and phenotypic analyses of these endo-
phytes could pave way for their use in biotechnology and 
agriculture.

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s0028​4-021-02429​-5.
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